
Codes, Involutions, and DNA Encodings�

Lila Kari, Rob Kitto, and Gabriel Thierrin

Department of Computer Science, Univ. of Western Ontario
London, Ontario, N6A 5B7 Canada
{lila, kitto, gab}@csd.uwo.ca

If we knew what it was we were doing,
it would not be called research, would it?

(Albert Einstein)

1 Introduction

DNA computing as a field started in 1994 when Leonard Adleman solved a hard
computational problem entirely by manipulations of DNA molecules in a test
tube [1]. The premise behind DNA computing is that DNA is capable of stor-
ing information, while various laboratory techniques that operate on and modify
DNA strands (called bio-operations in the sequel) can be used to perform compu-
tational steps. Most DNA computations consists of three basic stages. The first
is encoding the problem using single-stranded or double-stranded DNA. Then
the actual computation is performed by employing a succession of bio-operations
[14]. Finally, the DNA strands representing the solution to the problem are de-
tected and decoded. Because of the nature of the substrate in which the data is
encoded, namely DNA strands, problems can occur at the encoding stage which
would not occur in an electronic medium. In order to describe these problems and
our attempts at solutions, we now briefly present some basic molecular biology
notions and notations.

DNA (deoxyribonucleic acid) is found in every cellular organism as the stor-
age medium for genetic information. It is composed of units called nucleotides,
distinguished by the chemical group, or base, attached to them. The four bases,
are adenine, guanine, cytosine and thymine, abbreviated as A, G, C, and T .
The names of the bases are also commonly used to refer to the nucleotides that
contain them. Single nucleotides are linked together end–to–end to form DNA
strands. A short single-stranded polynucleotide chain, usually less than 30 nu-
cleotides long, is called an oligonucleotide. The DNA sequence has a polarity: a
sequence of DNA is distinct from its reverse. The two distinct ends of a DNA
sequence are known under the name of the 5′ end and the 3′ end, respectively.
Taken as pairs, the nucleotides A and T and the nucleotides C and G are said
to be complementary. Two complementary single–stranded DNA sequences with

� Research partially supported by Grants R0504A01 and R2824A01 of the Natural
Sciences and Engineering Research Council of Canada.

W. Brauer et al. (Eds.): Formal and Natural Computing, LNCS 2300, pp. 376–393, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Codes, Involutions, and DNA Encodings 377

opposite polarity are called Watson/Crick (W/C) complements and will join to-
gether to form a double helix in a process called base-pairing, or hybridization
[14].

In most proposed DNA-based algorithms, the initial DNA solution encoding
the input to the problem will contain some DNA strands which represent single
codewords, and some which represent strings of catenated codewords. Several
attempts have been made to address the issue of “good encodings” by trying
to find sets of codewords which are unlikely to form undesired bonds with each
other by hybridization [3], [9], [8]. For example genetic and evolutionary algo-
rithms have been developed which select for sets of DNA sequences that are less
likely to form undesirable bonds [4], [5]. [6] has developed a program to cre-
ate DNA sequences to meet logical and physical parameters such as uniqueness,
melting temperatures and G/C ratio as required by the user. [7] has addressed
the issue of finding an optimal word design for DNA computing on surfaces.
[12] has designed a software for constraint-based nucleotide selection. [10] has
investigated encodings for DNA computing in virtual test tubes. [15] used com-
binatorial methods to calculate bounds on the size of a set of uniform code words
(as a function of codeword length) which are less likely to mishybridize.

In this paper, we only address some of the various possible issues that might
arise in DNA encodings, namely undesirable intramolecular and intermolecular
hybridizations of the following types. Firstly, it is undesirable for any single DNA
strand (representing a codeword or a string of codewords) to form a hairpin
structure, which can happen if either end of the strand binds to another section
of that same strand. Secondly, it is undesirable for any strand representing a
codeword to bind to another one representing a string of one or more codewords.
If such undesirable hybridizations occur, they will in practice render the involved
DNA strands useless for the subsequent computational steps.

We present an initial investigation into the algebraic structure of DNA-
compliant languages: languages consisting of codewords (DNA strands) that
avoid some or all of the above mentioned undesirable bindings. It is hoped that
this will lead to a deeper understanding of what is necessary for encoding in-
formation in DNA, and will ultimately assist in solving the difficult problem
of “good DNA encodings”. The paper is organized as follows. Section 2 intro-
duces some basic definitions and notations. Section 3 formalizes the problems we
address and defines the notion of a DNA compliant language: a language of code-
words that avoid the above undesirable bindings. Section 4 studies the simpler
notions of complement-compliance and mirror-image compliance needed to solve
the general case of DNA compliance. Section 5 connects these particular cases
to DNA compliance, generalizes the notion of DNA compliance, and investigates
languages with this generalized property. Section 6 investigates generalizations of
some classical coding theory notions (infix, prefix, suffix codes, density, residues,
ideals) inspired by this extension of the notion of DNA compliance.



378 Lila Kari, Rob Kitto, and Gabriel Thierrin

2 Basic Definitions and Notations

In this section we define the basic algebraic, formal language theory and coding
theory notions needed in this paper. For further formal language theory notions
the reader is referred to [11] and for further coding theory and algebraic notions
to [18], [13], [11].

A mapping α : S → S of a set S into S is bijective if it is both injective and
surjective. Every bijective mapping has an inverse α−1 that is also bijective and
αα−1 = α−1α = ε where ε is the identity mapping.

Definition 2.1. An involution θ : S → S of S is a mapping such that θ2 = ε.

It follows then that an involution θ is bijective and θ = θ−1.
The identity mapping is a trivial example of involution.
Given an involution, the relation ρθ defined by uρθv if and only if u = v or

v = θ(u) is an equivalence of S and every class has one or two elements.
The product of involutions is not necessarily an involution. For example take

S = {a, b, c} and the involutions α and β defined by:

α(a) = b, α(b) = a, α(c) = c ; β(a) = c, β(b) = b, β(c) = a

Then:
αβ(a) = c, αβ(b) = a, αβ(c) = b.

It is clear that the product αβ is no more an involution as, for example,
(αβ)2(a) = b �= a.

However if the involutions α, β commute, i.e. if αβ = βα, then their product
αβ is an involution because;

(αβ)(αβ) = (αβ)(βα) = α(β2)α = α2 = ε.

Let X∗ be the free monoid generated by the finite alphabet X , let 1 de-
note the neutral element, i.e. the empty word, and let X+ = X∗ \ {1}. The
catenation of two words u, v ∈ X∗ is denoted by uv or by u.v and consists of
the juxtaposition of the words. A mapping α : X∗ → X∗ is called a morphism
(anti-morphism) of X∗ if α(uv) = α(u)α(v) (respectively α(uv) = α(v)α(u)) for
all u, v ∈ X∗. A bijective morphism (anti-morphism) is called an isomorphism
(anti-isomorphism) of X∗.

Remark that a morphism or an anti-morphism α of X∗ is completely deter-
mined by the image α(X) of the alphabetX . If α is a morphism (anti-morphism)
of X∗ that is also an involution, then α(X) = X since α is an involution and
therefore a bijective function, and α(a) �= 1 for all a ∈ X .

Examples.
(1) Let µ : X∗ → X∗ be the mapping µ(u) = v defined by:

u = a1a2 · · ·ak, v = ak · · · a2a1, ai ∈ X, 1 ≤ i ≤ k.

The word v is called the mirror image of u. Since µ2 = ε, µ is an involution of
X∗, and will be called the mirror -involution or simply the m-involution of X∗.



Codes, Involutions, and DNA Encodings 379

The m-involution of X∗ is not a morphism but an anti-morphism of X∗

because µ(uv) =µ(v)µ(u) for u, v ∈ X∗.
(2) A mapping γ : X → X of X into X can be extended to a morphism

of X∗ by γ(a1a2 · · · ak) = γ(a1)γ(a2) · · · γ(ak). If furthermore γ2 = ε, then this
morphism of X∗ is also an involution of X∗.

In the general case, an involution is just a mapping whose square is the
identity and as such is not closely related to the algebraic structure of X∗. We
give an example of an involution π of X∗ that is neither a morphism nor an
anti-morphism.

A primitive word, [18], w over X+ is a word with the property that w = up

for some p ≥ 1 and u ∈ X+ implies p = 1 and u = w.
Let u ∈ X∗. If u = 1, then π(u) = 1. If u �= 1, then u = pk where p is a

primitive word and k a positive integer. If k is odd, then we define π(u) = pk+1,
and if k is even we define π(u) = pk−1. Then clearly π is an involution which is
not a morphism or an anti-morphism. For example take u = a ∈ X and v = a2.
Then π(uv) = π(a3) = a4, π(u) = a2 and π(v) = a. Hence π(uv) �= π(u)π(v)
and π(uv) �= π(v)π(u).

Note. The involutions considered in this paper being always either morphisms
or an anti-morphisms of X∗, from now on an involution will always be implicitely
assumed to be morphic or antimorphic.

3 DNA-related Types of Compliance

The W/C complement of a single strand of DNA is the strand that would anneal
to it in the process of base-pairing. For example, the Watson-Crick complement
of 5′−AAACC − 3′ is 3′−TTTGG− 5′ which is the same as 5′−GGTTT − 3′.
If we consider the DNA alphabet ∆ = {A,C,G, T }, by convention, a word
a1a2 . . . an ∈ ∆∗, n ≥ 0, represents the single DNA strand 5′ − a1a2 . . . an − 3′

in the 5’ to 3’ orientation.
Three involutions can be defined on ∆∗. The m-involution µ (mirror-involu-

tion), which is an anti-morphism, has been formally defined in Section 2. The
mapping γ : ∆→ ∆ defined by:

γ(A) = T, γ(T ) = A, γ(C) = G, γ(G) = C,

associates to each nucleotide its complement and can be extended in the usual
way to a morphism of ∆∗ that is also an involution of ∆∗. This involution γ will
be called the complementary-involution or simply the c-involution of ∆∗.

It is easy to see that γ and µ commute, i.e. γµ = µγ. Hence γµ, denoted by
τ is also an involution of ∆∗, called the W/C involution. Furthermore τ is an
anti-morphism. Note that, for w ∈ ∆∗, τ(w) represents the W/C complement of
w. Using our notations and convention, for example, τ(AAACC) = GGTTT .

The following notations will also be used:

γ(u) = ū, µ(u) = ũ, γµ(u) = τ(u) =←−u .



380 Lila Kari, Rob Kitto, and Gabriel Thierrin

Let us assume that for encoding the input information to a computation,
we use a set of single DNA strands, i.e., a finite set K ⊆ ∆∗ of words, called
also codewords. Due to the W/C complementarity, if the codewords are not care-
fully designed, they will stick to each other forming undesired double-stranded
structures.

Some of the situations that should be avoided when designing the codewords
are the following.

Situation 1. A codeword that sticks to itself by intramolecular hybridization:
uv ∈ K∗, u, v ∈ ∆∗ with

(i) ←−v being a subword of u (Figure 1);
(ii) ←−u being a subword of v (Figure 2).
Situation 2. Two codewords that stick to each other by intermolecular hy-

bridization: u, v ∈ K with ←−v being a subword of u (Figure 3).
Situation 3. A codeword that sticks to the catenation of two other codewords,

by intermolecular hybridization: u1, u2, v ∈ K with ←−v being a subword of u1u2

(Figure 4).
Remark that Situation 2 and Situation 3 are closely related. Note also that

if we consider the simplified version of Situation 1 where u, v ∈ K instead of
u, v ∈ ∆∗ then Situation 1 becomes Situation 2. In view of these remarks, in this
paper we will be dealing mainly with languages avoiding Situation 2.

v
Fig. 1. Intramolecular hybridization leading to unwanted hairpin formations:

uv ∈ K∗, ←−v being a subword of u.

u

Fig. 2. Intramolecular hybridization leading to unwanted hairpin formations:
uv ∈ K∗, ←−u being a subword of v.

v

u

Fig. 3. Intermolecular hybridization between two codewords: u, v ∈ K, ←−v
being a subword of u.



Codes, Involutions, and DNA Encodings 381

u
1

u
2

v
Fig. 4. Intermolecular hybridization between a composite codeword u1u2 and

a third codeword v: u1, u2, v ∈ K, ←−v being a subword of u1u2.

A simple (but not necessarily practical) solution to the above problems is the
following. Take a language K over ∆ such that K+ ⊆ {A,C}+. Then for every
u ∈ K+, ←−u /∈ K+. This means that there is no possibility for the occurences of
the above Situations 1, 2 or 3.

The following definition formalizes a property of a language K which, if
satisfied, ensures that the codewords of K avoid Situation 2 (Fig.3).

Definition 3.1. A language K ⊆ ∆∗ is called DNA compliant (DNA prefix-
compliant, DNA suffix-compliant) iff:

x←−v y = u, u, v ∈ K ⇒ x = y = 1 (←−v y = u ⇒ y = 1, y←−v = u ⇒ y = 1).

In the following we shall sometimes refer to DNA compliant, DNA prefix-
compliant, DNA suffix-compliant languages shortly as compliant, p-compliant,
s-compliant languages.

Note that the preceding definition does not exclude the obviously undesirable
case where two codewords in the language are exact W/C complements of each
other. To eliminate this situation as well, we introduce the stronger notion of a
strictly DNA compliant language.

Definition 3.2. A language K ⊆ ∆∗ is called strictly DNA compliant if it is
DNA compliant and furthermore, for all u, v ∈ K we have u �=←−v .

4 The Complementarity and Mirror Involutions

Before addressing the general problem of DNA compliance that involves the
W/C involution τ = γµ, in this section we address separately the simpler cases
involving the complementary involution γ and the mirror involution µ.

Definition 4.1. A language K ⊆ ∆∗ is called complementarity-compliant or
c-compliant (respectively complementarity prefix compliant or cp-compliant) if
u ∈ K,xūy = v ∈ K(resp. ūy = v ∈ K) implies x = y = 1.

Definition 4.2. A language K ⊆ ∆∗ is called strictly c-compliant (cp-compliant)
if it is c-compliant (cp-compliant) and for all u, v ∈ K we have that u �= v̄.

Let K̄∗ = {ū|u ∈ K∗}. Clearly K̄∗ is a submonoid of ∆∗ that is isomorphic
to K∗.



382 Lila Kari, Rob Kitto, and Gabriel Thierrin

Proposition 4.1. A c-compliant (cp-compliant) language K ⊆ ∆∗ is strictly
c-compliant (cp-compliant) if and only if K∗ ∩ K̄∗ = {1}.
Proof. Indeed, suppose K is a strictly c-compliant language and K∗∩K̄∗ �= {1}.
Since 1 ∈ K∗ and 1 ∈ K̄∗, there must be some x ∈ ∆+ such that x ∈ K∗ and
x ∈ K̄∗. Furthermore, x ∈ K̄∗ implies x̄ ∈ K∗, from the definition of K̄∗ and
because γ is an involution.

Let x = uv, u ∈ K, v ∈ K∗. Let x̄ = wz, w ∈ K, z ∈ K∗. Suppose |u| < |w|.
Then ∃r ∈ ∆+ such that ur = w̄ (in fact, r will be a prefix of v). Since r �= 1,
K is not cp-compliant, and thus not c-compliant.

If |w| < |u|, the argument is the same. If |w| = |u|, then w = ū, and although
K could be c-compliant, it is not strictly c-compliant. Thus K∗ ∩ K̄∗ = {1}.

Suppose K is a c-compliant language with K∗ ∩ K̄∗ = {1} and that K is not
strictly c-compliant. Then there is a v ∈ ∆+ such that v, v̄ ∈ K. But then v,
v̄ ∈ K̄, and thus {v, v̄} ⊆ K∗ ∩ K̄∗ - a contradiction.

The proof is similar for cp-compliant languages. ♣
Note that K∗ ∩ K̄∗ = {1} does not imply that K is c-compliant, as shown

by the example K = {ACC, TGGC}.
Proposition 4.2. Let K ⊆ ∆∗ be c-compliant language. Then ux = v̄y, u, v ∈
K implies x = y and hence u = v̄.

Proof. If u is a prefix of v̄, then v̄ = ur, v = ūr̄. Since K is a cp-compliant
language, then r̄ = 1, i.e. r = 1 and u = v̄. If v̄ is a prefix of u, then u = v̄s and
similarly s = 1 and u = v̄. ♣

Proposition 4.3. If not empty, the intersection of c-compliant (cp-compliant)
languages is a c-compliant (cp-compliant) language.

Proof. Immediate. ♣
Similar results hold for the case of strictly c-compliant (cp-compliant) lan-

guages.
During computations, encodings for two different problems might be com-

bined by, for example, catenating codewords from the two languages used for
encoding the inputs of the two problems. The following proposition shows that
this process preserves the property of c-compliance.

Proposition 4.4. The catenation K = K1K2 of (strictly ) cp-compliant lan-
guages K1 ⊆ ∆∗ and K2 ⊆ ∆∗ is a (strictly) cp-compliant language.

Proof. Let u ∈ K and ūx ∈ K. Then u = u1u2 with u1 ∈ K1, u2 ∈ K2, ū = ū1ū2

and ū1ū2x = c1c2, c1 ∈ K1, c2 ∈ K2.
If |ū1| ≤ |c1|, then ū1y = c1 for some y ∈ ∆∗. Since K1 is cp-compliant, y = 1

and ū1 = c1. Therefore ū2x = c2 and x = 1 since K2 is also cp-compliant.
If |ū1| > |c1|, then ū1 = c1z for some z ∈ ∆∗. This implies u1 = ¯̄u1 = c̄1z̄.

Since u1, c1 ∈ K1 and K1 is cp-compliant, we have z̄ = 1, z = 1 and hence
ū1 = c1, a contradiction.



Codes, Involutions, and DNA Encodings 383

Therefore ū1ū2x = c1c2 implies x = 1 and hence K1K2 is a cp-compliant
language.

For the case of strict compliance, we have to show that ū1ū2 �= c1c2. Suppose
that ū1ū2 = c1c2. Then, as above, either ū1y = c1 or ū1 = c1z. Since both K1

and K2 are strictly compliant, this is impossible. ♣

Proposition 4.5. Every (strictly) cp-compliant language can be embedded in a
maximal (stricly) cp-compliant language.

Proof. Suppose that Γ = {Ki ⊆ ∆∗|i ∈ I} is a chain of cp-compliant languages:

· · · ⊆ Kj ⊆ · · · ⊆ Kk ⊆ · · ·
Let K =

⋃
i∈I Ki. It is easy to see that K is also a cp-compliant language. The

proposition follows then from Zorn’s Lemma. The proof is similar for the case
of stricly cp-compliant languages. ♣

A language L ⊆ X∗ is called dense (right dense), [18], if for every u ∈ X∗,
there exist x, y ∈ X∗ such that xuy ∈ L(uy ∈ L). In the following we define an
analogous notion, that of complementarity density. Proposition 4.6 then proves
that a sufficient condition for a strictly cp-compliant language K ⊆ ∆∗ to be
maximal is that K∗ be right c-dense.

Definition 4.3. A language K ⊆ ∆∗ is said to be right c-dense if for every
u ∈ ∆∗ there is x ∈ ∆∗ such that ūx ∈ K.

Proposition 4.6. Let K ⊆ ∆∗ be a stricly cp-compliant language. If K∗ is right
c-dense, then K is a maximal stricly cp-compliant language.

Proof. Suppose K is not maximal. Then there is v /∈ K such that T = K ∪ {v}
is a strictly cp-compliant language. The right c-density implies the existence of
x ∈ ∆∗ such that v̄x ∈ K∗, i.e. v̄x = u1u2 · · ·uk, ui ∈ K. This implies either
v̄ = u1y or u1 = v̄z, i.e. ū1ȳ = v ∈ T or v̄z = u1 ∈ T . Since T is a cp-compliant
language, then either ȳ = 1, ū1 = v or z = 1, v̄ = u1, a contradiction because of
the strict compliance of T . ♣

The converse of Proposition 4.6 is not true as shown by the following example.
Let K = A∆∗ ∪ C∆∗. This language over ∆ is strictly cp-compliant and it is
easy to see that it is maximal. Clearly the language K∗ is not right c-dense.

Recall that, [18], a language L ⊆ X∗ is called right-unitary if u ∈ L∗,
ux ∈ L∗ imply x ∈ L∗. The following definition is analogous to that of a right-
unitary language and Proposition 4.7 relates the notions of right c-unitary and
cp-compliance. It turns out that, given a right c-unitary language K∗, where
K ⊆ ∆∗, one can construct a cp-compliant language K ′ ⊆ ∆∗.

Definition 4.4. A language K ⊆ ∆∗ is called right c-unitary if u ∈ K∗ and
ūx ∈ K∗ imply x ∈ K∗.



384 Lila Kari, Rob Kitto, and Gabriel Thierrin

Example. Let K = A∆∗ ∪C∆∗. Then K+ is right c-unitary. Indeed suppose
that u, ūx ∈ K+. Every word inK+ starts either with A or C and hence ūx = Ty
or Gy for some y ∈ ∆∗, which is impossible. Hence K = K+ is right c-unitary
by default.

Proposition 4.7. Consider K ⊆ ∆∗ and let

K ′ = K+ \ [K̄+K+]

If K∗ is right c-unitary then K ′ is cp-compliant.

Proof. Let u ∈ K ′, ūx ∈ K ′ ⊆ K∗. As K∗ is right c-unitary we have that
x ∈ K∗, therefore

x = x1x2 . . . xm, xi ∈ K, 1 ≤ i ≤ m.

The word u ∈ K ′ ⊆ K∗ and therefore ū ∈ K̄∗. If any of xi, 1 ≤ i ≤ m would
not be the empty word, ūx would belong to K̄+K+ which would contradict the
assumption about ūx. We can therefore conclude that xi = 1 for all 1 ≤ i ≤ m
which implies that K ′ is cp-compliant. ♣

In a similar manner to the c-involution, one can use the mirror involution
to define m-compliant languages. A language K ⊆ ∆∗ is called m-compliant
(mp-compliant, ms-compliant) if u ∈ K,xũy = v ∈ K(ũy = v ∈ K,xũ = v ∈ K)
imply x = y = 1. If we add the condition that for any u, v ∈ K, ũ �= v, then
K will be strictly m-compliant. Informally, in an m-compliant language, the
mirror image of a codeword cannot be a proper subword of another codeword.
In a strictly m-compliant language, the mirror image of a codeword cannot be a
subword of another codeword.

Example: K = {GGGA,CCG, TTAAA} is strictly m-compliant, whereas
K ′ = {GGGA,AGG} is not m-compliant, and K ′′ = {GGGA,AGGG} is m-
compliant but not strictly m-compliant.

Using this definition of m-compliance, properties of m-compliant languages
can be explored.

In contrast to the c-compliant case, the catenationK = K1K2 ofm-compliant
languages over ∆ is not necessarily an m-compliant language. Indeed, let K1 =
{CTG, TA} and K2 = {AT,GT }. Both K1 and K2 are m-compliant (in fact
they are strictly m-compliant), but {CTGAT, TAGT } ⊂ K, so K is not m-
compliant. Note that this example also demonstrates that the catenation of two
ms-compliant languages is not necesarily ms-compliant.

A language consisting of a single codeword can fail to be strictlym-compliant.
An example is K = {TAAT }. In contrast, any single-codeword language (except
the empty word) will be strictly c-compliant.

A language which is both c-compliant andm-compliant will not necessarily be
DNA compliant. Take for example K = {CGT,ACGA}. Then K is both m- and
c- compliant, but is not DNA compliant. However,m- and c- compliance are still
related to DNA compliance. Indeed in Section 5 we prove results that connect the
three different types of compliance determined by two different involutions and
their product, respectively. In particular, Corollary 5.1 gives a sufficient condition



Codes, Involutions, and DNA Encodings 385

(involving the notions of c-compliance and m-compliance) for a language to be
DNA compliant.

5 From DNA Compliance to Involution-Compliance

This section addresses the connections between the notions of c-compliance,
m-compliance and the DNA compliance which was the original motivator of
this study. Recall that the notions of c-compliance, m-compliance and DNA
compliance were related respectively to the complementarity involution γ, the
mirror involution µ and the Watson/Crick involution τ which is the product
between the two, i.e., τ = γµ. Instead of proving results related to the particular
DNA-related involutions, we generalize from the DNA alphabet∆ to an arbitrary
finite alphabet X and extend the notions of compliance to refer to arbitrary
(morphic or anti-morphic) involutions of X∗. All the results obtained will have
as corollaries results pertaining to the DNA-related involutions. In particular,
Corollary 5.1 gives sufficient conditions for a c-compliant language to be DNA
compliant, and for an m-compliant language to be DNA compliant.

Definition 5.1. Let θ be an involution of X∗. A language L ⊆ X∗ is said to be
θ-compliant (θ-p-compliant, θ-s-compliant) if:

u, xθ(u)y ∈ L (θ(u)y ∈ L, xθ(u) ∈ L) ⇒ x = y = 1.

The above condition prevents the image under θ of a word u ∈ L to be a
proper subword (prefix, suffix) of a word in L.

In order to eliminate also the case of two words u, v ∈ L with u = θ(v), we
strengthen the definition as follows.

Definition 5.2. Let θ be an involution of X∗ and L ⊆ X∗. A language L is
said to be strictly θ-compliant (θ-p-compliant, θ-s-compliant) if it is θ-compliant
(θ-p-compliant, θ-s-compliant) and, in addition, for each u, v ∈ L we have that
u �= θ(v).

Remark that if θ = ε, the identity involution, then the θ-compliant languages
are respectively the infix, prefix and suffix codes. A prefix code (suffix code), [18],
[13], is a nonempty language A ⊆ X+ with the property that A ∩ AX+ = ∅
(A ∩ X+A = ∅). An infix code is a language A with the property that for all
x, y, u ∈ X∗ we have that xuy ∈ L and u ∈ L together imply x = y = 1.

In general θ-compliant languages are not infix codes. Let L = {A,C,AC} ⊆
∆∗. L is not an infix code, but a τ -compliant language relatively to the W/C
involution τ .

An infix code is in general not θ-compliant. For example, the language {GG,
ACCA} ⊆ ∆∗ is an infix code, but τ(GG) = CC and ACCA = Aτ(GG)A, and
hence the language is not τ -compliant.

Proposition 5.1. If L is a θ-compliant language of X∗ such that θ(L) ⊆ L,
then L is an infix code.



386 Lila Kari, Rob Kitto, and Gabriel Thierrin

Proof. Let xuy ∈ L with u ∈ L. Since the involution θ is bijective, there is
v ∈ X∗ such that θ(v) = u and hence xθ(v)y ∈ L. Since θ(u) = v and θ(L) ⊆ L,
then v ∈ L. Because L is θ-compliant, x = y = 1 and therefore L is an infix
code. ♣

The following results make the connection between c-compliance, m-compli-
ance and DNA compliance.

Proposition 5.2. Let θ1 and θ2 be two commuting involutions of X∗. If L ⊆ X∗

is a language such that L ∪ θ1(L) is θ2-compliant, then L is θ1θ2-compliant.

Proof. Let θ = θ1θ2 and suppose that L ∪ θ1(L) is θ2-compliant but is not θ-
compliant. Then there exist u, v ∈ L such that u = xθ(v)y with xy �= 1. Let
T = {u, v, θ1(u), θ1(v)}. Since T ⊆ L ∪ θ1(L), then T must be θ2-compliant.
From u = xθ(v)y follows θ1(u) = θ1(xθ(v)y).

If θ1 is a morphism, then:

θ1(u) = θ1(x)θ1(θ1θ2(v))θ1(y) = θ1(x)θ2(v)θ1(y)

with θ1(u), v ∈ T . Since T is θ2-compliant, this implies θ1(x) = θ1(y) = 1 and
therefore x = y = 1, a contradiction with xy �= 1. Hence L is θ-compliant.

If θ1 is an antimorphism, then, since θ1θ2 = θ2θ1:

θ1(u) = θ1(y)θ1(θ1θ2(v))θ1(x) = θ1(y)θ2(v)θ1(x)

with θ1(u), v ∈ T . As above, we get a contradiction, hence L is θ-compliant. ♣

Corollary 5.1. Let L ⊆ ∆∗. If L ∪ γ(L) is µ-compliant or if L ∪ µ(L) is γ-
compliant, then L is DNA compliant, i.e. γµ-compliant.

Furthermore, K = {AGT,CCCG} is a DNA-compliant language for which
K ∪ K̃ is c-compliant and K ∪ K̄ is m-compliant, which means the sets of
languages {K|K ∪ K̃ is c-compliant } and {K|K ∪ K̄ is m-compliant } are non-
empty subsets of the set of DNA-compliant languages.

Proposition 5.3. Let θ be an involution of X∗. Then L ⊆ X∗ is θ-compliant
iff θ(L) is θ-compliant.

Proof. If u, xθ(u)y ∈ θ(L), then θ(u), θ(x)uθ(y) ∈ L if θ is a morphism or
θ(u),θ(y)uθ(x) ∈ L if θ is an antimorphism. In both cases, since L is θ-compliant,
we have θ(x) = θ(y) = 1 and hence x = y = 1. Therefore θ(L) is θ-compliant.

Conversely, if θ(L) is θ-compliant, then, from the first part of the proof, it
follows that L = θ(θ(L)) is also θ-compliant. ♣

The union of θ-compliant languages is not in general a θ-compliant language.
For example let ∆ be the DNA alphabet and τ be the W/C involution. Then
L1 = {A, AC} and L2 = {T , TG} are both τ -compliant. However their union
L ={A, T,AC, TG} is not τ -compliant, because A ∈ L, TG = θ(A)G ∈ L with
G �= 1.

If L is θ-compliant, then any subset T of L is also θ-compliant. Indeed
u, xθ(u)y ∈ T implies u, xθ(u)y ∈ L and hence x = y = 1.

The following generalizes Proposition 4.4.



Codes, Involutions, and DNA Encodings 387

Proposition 5.4. If the involution θ of X∗ is a morphism, then the catenation
L = L1L2 of θ-compliant (strictly θ-compliant) languages L1 ⊆ X∗ and L2 ⊆ X∗

is a θ-compliant (strictly θ-compliant) language.

Proof. Let u ∈ L and xθ(u)y ∈ L. Then u = u1u2 with u1 ∈ L1, u2 ∈ L2.
Since θ is a morphism, θ(u) = θ(u1)θ(u2) and xθ(u1)θ(u2)y = c1c2, c1 ∈

L1, c2 ∈ L2.

If |xθ(u1)| ≤ |c1|, then xθ(u1)z = c1 for some z ∈ X∗. Since L1 is θ-compliant,
then x = z = 1 and θ(u1) = c1. Therefore θ(u2)y = c2 and y = 1 since L2 is
θ-compliant.

If |xθ(u1)| > |c1|, then |θ(u2)y| < |c2| and zθ(u2)y = c2. Using a similar
argument as above, we get z = y = 1.

Hence u ∈ L and xθ(u)y ∈ L implies x = y = 1, i.e. L is θ-compliant.
For the case of strict compliance, we have to show that θ(u1u2) =

θ(u1)θ(u2) �= c1c2. Suppose that θ(u1)θ(u2) = c1c2. Then, as above either
θ(u1)z = c1 or zθ(u2) = c2 which is impossible because of the strict compli-
ance of both L1 and L2. ♣

If the involution θ is an anti-morphism of X∗, then the catenation of θ-
compliant languages is not in general a θ-compliant language. Indeed, let τ be
the W/C involution of ∆∗. The languages {CTG,AT } and {AT,CA} are both
τ -compliant. However L = {CTGAT,ATCA} which is included in their catena-
tion, is not τ -compliant.

If θ is an involution of X∗, then a submonoid S ⊆ X∗is said to be right
θ-unitary if u, θ(u)x ∈ S implies x ∈ S.

The following proposition generalizes Proposition 4.7.

Proposition 5.5. Let L ⊆ X+ and let θ be an involution of X∗. Let

T = L+\(θ(L)+L+)

If L∗ is right θ-unitary, then T is a θ-p-compliant language.

Proof. Let u, θ(u)x ∈ T ⊆ L+. Since L∗ is right θ-unitary, x ∈ L∗. Suppose
x �= 1. Then:

x = x1x2 · · ·xm, xi ∈ L, 1 ≤ i ≤ m.

The word u ∈ L+and therefore θ(u) ∈ θ(L+). If any of xi, 1 ≤ i ≤ m, would
not be the empty word, θ(u)x would belong to θ(L)+L+ which would contradict
the assumption about θ(u)x. We can therefore conclude that xi = 1 for all i,
1 ≤ i ≤ m, which implies that T is θ-p-compliant. ♣

Proposition 5.6. Let θ be an involution and a morphism of X∗ and let L ⊆ X∗

be a nonempty language. If L is a θ-p-compliant language, then L∗ is a right θ-
unitary submonoid of X∗.



388 Lila Kari, Rob Kitto, and Gabriel Thierrin

Proof. Suppose that u, θ(u)x ∈ L∗. If θ is a morphism of X∗, then:

u = u1u2 · · ·uk, ui ∈ L, θ(u)x = θ(u1)θ(u2) · · · θ(uk)x = v1v2 · · · vr, vj ∈ L
Either |θ(u1)| ≤ |v1| or |θ(u1)| > |v1|.

In the first case, we have v1 = θ(u1)z for some z ∈ X∗. Since L is θ-p-
compliant and u1, v1 ∈ L, then z = 1 and θ(u1) = v1.

In the second case, we have θ(u1) = v1z with z �= 1. But, as above, u1, v1 ∈ L
and the compliance condition implies z = 1, and θ(u1) = v1.

Therefore θ(u1) = v1 and by cancellation:

θ(u2) · · · θ(uk)x = v2 · · · vr

This reduction can be extended until we get x = 1 or x =vk+1 · · · vr and hence
x ∈ L∗, i.e. L∗ is right θ-unitary. ♣

The following generalizes Proposition 4.1.

Proposition 5.7. Let θ be a morphic involution. A θ-compliant (θ-p-compliant)
language L ⊆ X∗ is strictly θ-compliant (strictly θ-p-compliant) if and only if
L∗ ∩ θ(L)∗ = {1}.
Proof. The proof given for the complementarity involution can be extended to
this general case in the following way.

Suppose L is strictly θ-compliant and let u ∈ L∗ ∩ θ(L)∗, u �= 1. Then
u = u1x1= θ(u2x2) = θ(u2)θ(x2) with u1, u2 ∈ L, u1, u2 �= 1, x1, x2 ∈ L∗.

If |u1| < |θ(u2)|, then θ(u2) = u1x, u2 = θ(u1)θ(x) with x �= 1 and hence
θ(x) �= 1, a contradiction since L is θ-compliant.

If |u1|≥ |θ(u2)|, then u1 = θ(u2)x. This implies x = 1 and u1 = θ(u2). Hence
u2, θ(u2) ∈ L, a contradiction with the strictness of L.

Therefore L∗ ∩ θ(L)∗ = {1}.
Suppose now L to be a θ-compliant language with L∗ ∩ θ(L)∗ = {1}. If L

is not strictly θ-compliant, then there is a word u ∈ X+ such that u, θ(u) ∈ L.
This implies u, θ(u) ∈ θ(L). Thus, {u, θ(u)} ⊆ L∗ ∩ θ(L)∗, a contradiction. ♣

6 Maximality, Density, Residue, and Ideals

We have seen that in the particular case when θ is the indentity involution,
θ-compliant (θ-p-compliant, θ-s-compliant) languages coincide with the classi-
cal infix codes (prefix codes, suffix codes). This suggests that other well-known
notions from coding theory, like density, residue and ideals can be generalized
from the particular case of the identity involution to the case of an arbitrary
involution. This section investigates such generalizations and their properties.

The following proposition generalizes Proposition 4.5.

Proposition 6.1. Let θ be an involution of X∗. Every θ-compliant (θ-p-com-
pliant) language L can be embedded in a maximal θ-compliant (θ-p-compliant)
language.



Codes, Involutions, and DNA Encodings 389

Proof. The proof follows by showing first that the union of languages of any chain
of θ-compliant (θ-p-compliant) languages containing L has the same property.
Then, by Zorn’s Lemma, it follows that the family of θ-compliant (θ-p-compliant)
languages in X∗ containing L has a maximal element. ♣

Proposition 6.2. Let θ be an involution of X∗. Every strictly θ-compliant (θ-
p-compliant) language L can be embedded in a strictly maximal θ-compliant (θ-
p-compliant) language.

Proof. Similar to the proof of the previous proposition. ♣
If L ⊆ X∗, let Lg(L) = max{|u| | u ∈ L}. It is known (see [18]) that, for

every finite prefix code P with Lg(P ) = n, there exists a maximal prefix code
P ′ such that P ⊆ P ′ and Lg(P ′) = n.

This result which is true for ε-p-compliant languages, cannot in general be
extended to every θ-involution as shown by the following example.

Example. Let X = {a, b} and the morphic involution θ of X∗ defined by
θ(a) = b, θ(b) = a. The language L = {a, a2, ab} is a stricly θ-p-compliant
language. Let T be a maximal strictly θ-p-compliant language containing L.
Remark first that bX∗ ∩ T = ∅. If not, let by ∈ T . Since b = θ(a) and a ∈ T ,
we have θ(a)y ∈ T . Hence y = 1 and a, θ(a) ∈ T , in contradiction with the
strictness of T . If u ∈ T , then u = ax and θ(u) = bθ(x). Hence θ(T ) ⊆ bX∗.

We will show that T is infinite by showing that a+ ⊆ T . We have a, a2 ∈ T .
Suppose that ak ∈ T and that ak+1 /∈ T . Let T ′ = T ∪ ak+1. Then T ′ is not a
strictly θ-p-compliant language. That means that one or both of the following
situations hold:

(1) There is a word u such that u, θ(u) ∈ T ′ with u = θ(u). Since T is strictly
θ-p-compliant, u = ak+1 or θ(u) = ak+1. In the first case, θ(u) = bk+1 /∈ T ′, a
contradiction. In the second case, u ∈ T and hence θ(u) ∈ bX∗, a contradiction.

(2) T ′ is not θ-p-compliant, i.e. there are words u, v ∈ T ′ such that θ(u)x = v
with x �= 1 and either u /∈ T or v /∈ T .

If v /∈ T , then v = ak+1. From θ(T ) ⊆ bX∗ follows that θ(T ′) ⊆ bX∗ and
hence θ(u)x = bz = ak+1, a contradiction.

If v ∈ T , then u ∈ T ′ \ T , i.e. u = ak+1 and

θ(ak+1)x = bk+1x = v ∈ bX∗

a contradiction since bX∗ ∩ T = ∅.
Therefore ak+1 ∈ T .
It follows then that every maximal θ-p-compliant language containing the

finite language L is infinite, showing that the result for finite prefix codes cannot
be extended to finite θ-p-compliant languages for every involution θ.

We now connect the notion of maximality to the notions of density, residue,
and ideals generalized to arbitrary involutions.

The following definition is a further generalization of the notion of a dense
language, from the particular case of the identity involution to that of an arbi-
trary involution.



390 Lila Kari, Rob Kitto, and Gabriel Thierrin

Definition 6.1. Let θ be an involution of X∗. A language L ⊆ ∆∗ is said to be
(right,left) θ-dense if for every u ∈ ∆∗, there are x, y ∈ ∆∗ such that xθ(u)y ∈ L
(θ(u)y ∈ L, xθ(u) ∈ L).

Based on the preceding definition, the following result now generalizes Propo-
sition 4.6 in Section 4 dealing with the particular case of the complementary
involution.

Proposition 6.3. Let θ be an involution of X∗ that is a morphism and let
L ⊆ X∗ be a stricly θ-p-compliant language. If L∗ is right θ-dense, then L is a
maximal stricly θ-p-compliant language.

Proof. Suppose L is not maximal. Then there is v /∈ L such that T = L∪{v} is a
strictly θ-p-compliant language. The right θ-density of L∗ implies the existence
of x ∈ ∆∗ such that θ(v)x ∈ L∗, i.e. θ(v)x = u1u2 · · ·uk, ui ∈ L. This implies
either θ(v) = u1y or u1 = θ(v)z, i.e. θ(u1)θ(y) = v ∈ T or θ(v)z = u1 ∈ T .
Since T is a θ-p-compliant language, either θ(y) = 1 and θ(u1) = v, or z = 1
and θ(v) = u1, a contradiction because of the strict compliance of T . ♣

Recall that, [18], the residue R(L) of a language L ⊆ X∗ is defined as

R(L) = {u| u ∈ X∗, X∗uX∗ ∩ L = ∅}.

We can now generalize this notion from the identity involution to an arbitrary
involution as follows.

Definition 6.2. Let L ⊆ X∗ and let θ be an involution of X∗. The θ-residue
Rθ(L) of L is defined by:

Rθ(L) = {u|u ∈ X∗, X∗θ(u)X∗ ∩ L = ∅}

The right and the left θ-residue of L are defined similarly.

It is immediate that a language L is θ-dense if and only if its θ-residue is
empty. Recall that, [18], a language L ⊆ X∗ is called a (right, left) ideal of X∗

if u ∈ L, x, y ∈ X∗ imply xuy ∈ L (uy ∈ L, xu ∈ L). The following definition
generalizes the notion of ideal.

Definition 6.3. Let θ be an involution of X∗. A language L ⊆ X∗ is called a
(right, left) θ-ideal of X∗ if u ∈ L , x, y ∈ X∗, implies xθ(u)y ∈ L (θ(u)y ∈ L,
xθ(u) ∈ L).

If θ is the identity involution, then the above notions correspond to the usual
notions of residue and ideal.

Proposition 6.4. Let θ be an involution of X∗ and let L be a (right, left) θ
-ideal of X∗. Then θ(L) = L and L is a (right, left) ideal of X∗.



Codes, Involutions, and DNA Encodings 391

Proof. Let u ∈ L. Then θ(u) = 1.θ(u).1 ∈ L and therefore θ(L) ⊆ L. This
implies L ⊆ θ(θ(L)) ⊆ θ(L) and hence θ(L) = L. Since u ∈ L, there exists then
v ∈ L such that θ(v) = u. Therefore xuy = xθ(v)y ∈ L and therefore L is an
ideal. ♣

The previous proposition shows that every θ-ideal is an ideal, but the converse
is not true in general. For example, the language L = ∆∗C∆∗ is an ideal of ∆∗.
However C ∈ L, but τ(C) = ←−C = G /∈ L. This implies τ(L) �= L and hence L
cannot be a τ -ideal.

Proposition 6.5. Let θ be an involution of X∗. If not empty, the (right, left)
θ-residue Rθ(L) of a language L ⊆ X∗ is a (right, left) θ-ideal of X∗.

Proof. Let u ∈ Rθ(L) and suppose that, for some x, y ∈ X∗, xθ(u)y /∈ Rθ(L).
This impliesX∗xθ(u)yX∗∩L �= ∅ and henceX∗θ(u)X∗∩L �= ∅, a contradiction.♣

Proposition 6.6. Let θ be an involution of X∗. A language L⊆ X∗ is an ideal
if and only if θ(L) is an ideal of X∗.

Proof. (⇒) Let u ∈ θ(L) and x, y ∈ X∗. Since θ is bijective, there exist v ∈ L,
x′, y′ ∈ X∗ such that θ(v) = u, θ(x′) = x and θ(y′) = y. Since L is an ideal,
x′vy′ ∈ L and y′vx′ ∈ L.

If θ is a morphism, then:

xuy = θ(x′)θ(v)θ(y′) = θ(x′vy′) ∈ θ(L).

If θ is an anti-morphism, then:

xuy = θ(x′)θ(v)θ(y′) = θ(y′vx′) ∈ θ(L).

(⇐) Let u ∈ L, x, y ∈ X∗ and let x′, y′ such that θ(x′) = x, θ(y′) = y. Then
x′θ(u)y′ ∈ θ(L) and y′θ(u)x′ ∈ θ(L). If θ is a morphism, we have:

xuy = θ(x′)θ2(u)θ(y′) = θ(x′θ(u)y′) ∈ θ(θ(L)) = L

and if it is an anti-morphism, we have:

xuy = θ(x′)θ2(u)θ(y′) = θ(y′θ(u)x′) ∈ θ(θ(L)) = L.

Hence L is an ideal. ♣

We now consider relations between density and maximality. The next result
shows that if θ is an involution of X∗, then right density of a language L is
equivalent to right θ-density of L.

Proposition 6.7. Let θ be an involution of X∗. A language L ⊆ X∗ is right
θ-dense (θ-dense) if and only if it is right dense (dense).



392 Lila Kari, Rob Kitto, and Gabriel Thierrin

Proof. Suppose L is right θ-dense and let u ∈ X∗. Since an involution is a
bijective mapping, there exists v ∈ X∗ such that u = θ(v). The right θ-density
of L implies the existence of x ∈ X∗ such that θ(v)x ∈ L and hence ux ∈ L.

Suppose L is right dense and let u ∈ X∗. Since θ(u) ∈ X∗, then there is
x ∈ X∗ such that θ(u)x ∈ L and thus L is right θ-dense.

The proof for θ-density is similar to the proof for right θ-density. ♣
If the involution θ is the identity, then a θ-p-compliant language L is a prefix

code and we obtain the known result that if L∗ is right dense, the prefix code L
is maximal. The converse is true for prefix codes, but not in general as shown in
the following example.

Example. Let X = {a, b} and let θ be defined as θ(a) = b, θ(b) = a. This
involution of X∗ is also a morphism of X∗.

Let L = aX∗. This language L is a maximal strictly θ-p-compliant language.
Indeed, suppose L is not maximal. Then L is contained in a strictly θ − p-
compliant language T with L ⊂ T . Let u ∈ T \L. Then u = by for some y ∈ X∗

and:
u = θ(a)θ(y) ∈ T,

a contradiction with the fact that T is strictly θ-p-compliant. It follows then that
L = aX∗ is a maximal strictly θ-p-compliant language.

The language L∗ is not right θ-dense. This follows from the fact that (aX∗)∗∩
bX∗ = ∅. This example shows that, contrary to the case of maximal prefix codes,
a maximal strictly θ-p-compliant language is not necessarily right θ-dense.

7 Conclusions

This paper is a preliminary study in the formalization and algebraic treatment
of problems that arise when encoding data on a DNA substrate, where each
word corresponds to a single DNA strand. We define and study the algebraic
structure of DNA compliant languages, i.e. languages displaying several “good
encoding properties”. Moreover, viewing words and languages from this biolog-
ical perspective leads to generalizations of several well-known notions such as
infix code, prefix code, suffix code, density, residue and ideals.

References

1. L. Adleman. Molecular Computation of Solutions to Combinatorial Problems. Sci-
ence, 266, 1994, 1021-1024.

2. E.B. Baum. DNA Sequences Useful for Computation. Proceedings of DNA-based
Computers II, Princeton. In AMS DIMACS Series, vol.44, L.F.Landweber, E.Baum
Eds., 1998, 235-241.

3. R. Deaton, R. Murphy, M. Garzon, D.R. Franceschetti, S.E. Stevens. Good Encod-
ings for DNA-based Solutions to Combinatorial Problems. Proceedings of DNA-based
Computers II, Princeton. In AMS DIMACS Series, vol.44, L.F.Landweber, E.Baum
Eds., 1998, 247-258.



Codes, Involutions, and DNA Encodings 393

4. R. Deaton, M. Garzon, R. Murphy, D.R. Franceschetti, S.E. Stevens. Genetic Search
of Reliable Encodings for DNA Based Computation, First Conference on Genetic
Programming GP-96, Stanford U., 1996, 9-15.

5. R. Deaton, R.E. Murphy, J.A. Rose, M. Garzon, D.R. Franceschetti, S.E. Stevens
Jr. A DNA Based Implementation of an Evolutionary Search for Good Encodings for
DNA Computation. Proc. IEEE Conference on Evolutionary Computation ICEC-97,
267-271.

6. U. Feldkamp, S. Saghafi, H.Rauhe. DNASequenceGenerator - A Program for the
Construction of DNA Sequences. In [16], 179-189.

7. A.G. Frutos, Q. Liu, A.J. Thiel, A.M.W. Sanner, A.E. Condon, L.M. Smith, R.M.
Corn. Demonstration of a Word Design Strategy for DNA Computing on Surfaces.
Nucleic Acids Research, 25(23), 1997, 4748-4757.

8. M. Garzon, P.Neathery, R. Deaton, R.C. Murphy, D.R. Franceschetti, S.E. Stevens
Jr., A New Metric for DNA Computing. In J.R. Koza, K.Deb, M. Dorigo, D.B.
Vogel, M. Garzon, H.Iba, R.L. Riolo, Eds., Proc. 2nd Annual Genetic Programming
Conference, Stanford, CA, 1997, Morgan-Kaufmann, 472-478.

9. M. Garzon, R. Deaton, L.F. Nino, S.E. Stevens Jr., M. Wittner. Genome Encoding
for DNA Computing Proc. 3rd Genetic Programming Conference, Madison, WI, 1998,
Morgan Kaufmann, 684-690.

10. M. Garzon, C. Oehmen. Biomolecular Computation in Virtual Test Tubes. In [16],
75-83.

11. Handbook of Formal Languages. G. Rozenberg, A. Salomaa Eds., Springer Verlag,
Berlin, 1997.

12. A.J. Hartemink, D.K. Gifford, J. Khodor. Automatic Constraint-Based Nucleotide
Sequence Selection for DNA Computations. Proceedings of DNA-based Computers
IV, Philadelphia. In Biosystems vol.52, nr.1-3, L.Kari, H.Rubin, D.H.Wood Guest
Eds., 1999, 227-235.

13. H. Jürgensen, S. Konstantinidis. Codes. In [11] vol.3, 511-600.
14. L. Kari. DNA Computing: Arrival of Biological Mathematics. The Mathematical

Intelligencer, vol.19, nr.2, Spring 1997, 9–22.
15. A. Marathe, A. Condon, R. Corn. On Combinatorial DNA Word Design. Pro-
ceeedings of DNA-based Computers V, June 14-15, 1999, E. Winfree, D. Gifford Eds.,
75-89.

16. Pre-Proceedings of DNA-based Computers VII, Tampa, Florida, June 10-13, 2001,
N. Jonoska, N.C. Seeman Eds.

17. J.H. Reif, T.H. LaBean, M. Pirrung, V.S. Rana, B. Guo, C. Kingsford, G.S. Wick-
ham. Experimental Construction of Very Large Scale DNA Databases with Associa-
tive Search Capability. In [16], 241-250.

18. H.J.Shyr, Free Monoids and Languages, Hon Min Book Company, Taichung, Tai-
wan, R.O.C., 1991.


	Codes, Involutions, and DNA Encodings
	Introduction
	Basic Definitions and Notations
	DNA-related Types of Compliance
	The Complementarity and Mirror Involutions
	From DNA Compliance to Involution-Compliance
	Maximality, Density, Residue, and Ideals
	Conclusions
	References


